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Evaluation of microstructures associated.  
wi th  hardness indentations in InP 

D. BRASEN 
Bell Laboratories, Murray Hill, New Jersey 07974, USA 

Microstructures associated with Knoop indentations on the (001 ) and (01 1 ) planes of 
single crystals of InP were evaluated by transmission electron microscopy (TEM). The 
results show that different {1 1 1 } (1 TO) slip systems are activated depending on the 
crystallographic direction along which the long axis of Knoop indentor is aligned. A 
simple explanation is developed which makes it possible to rationalize the observed slip 
systems and the hardness anisotropy of InP. 

1. Introduction 
Hardness anisotropy is a well known phenomenon 
and has been investigated for many b c c, fc c, and 
h c p  crystals [1 -5] .  In a previous paper [6], 
this type of investigation has been extended to InP 
crystals which have the zinc-blende structure. It is 
observed that for InP the KHN (Knoop hardness 
number) varies with both the plane and direction 
of indentation. 

A few attempts have been made to explain the 
observed hardness anisotropy of various crystals. 
Most of these studies are based on the work of 
Daniels and Dunn [1]. Basically they consider 
hardness to vary as an inverse function of  a tensile 
force, FT, acting parallel to the steepest slope of 
each facet of the Knoop indentor, and assume that 
the tendency to slip is limited to one slip plane per 
facet. For the purpose of analysis, the deformation 
was considered caused by small cylinders pulled in 
tension parallel to F T . From this model they 
derive an "effective resolved shear stress" which in 
effect modifies the Schmid Law for slip by multi- 
plying F/A cos X cos ~b by cos ~, where X is the 
angle between F w and the slip direction, ~ is the 
angle between F T and the normal to the slip plane 
and ff is the angle between the direction in the slip 
plane perpendicular to the slip direction and the 
direction in the indentor-facet plane perpendicular 
to FT. Their theory agrees fairly well with experi- 
mental results for cubic crystals [1, 3], but cannot 
explain the observed hardness anisotropy of h c p 

crystals. However, Feng and Elbaum [2] have 
been able to obtain a fairly close agreement with 
the experimental results for h c p Ti crystals by 
assuming a model similar to that of Daniels and 
Dunn, but using a force, FN,  which is normal to 
each facet of the Knoop indentor. Garfinkel and 
Garlick [4], have disputed the  above models, 
claiming that the actual mechanism of deforma- 
tion is complicated by the complex stress state 
associated with indentor penetration. In addition, 
Chin et aL [5] have shown that in order to pro- 
duce crack-free deformation in most cases it would 
be necessary for more than one slip system (gener- 
ally five) to be activated. Also, Wonsiewicz and 
Chin [7] have attempted to explain hardness 
anisotropy by assuming slip on five or more 
systems. 

Hill and Rowcliff [8] have examined, by TEM, 
the details of plastic deformation processes around 
hardness indentations in Si. Unfortunately, they 
used a Vickers indentor, which gave inconclusive 
results as far as hardness anisotropy is concerned. 

This paper will attempt to show that, with the 
aid of substructural details associated with hard- 
ness indentations in InP, it is possible to explain 
many features of the observed hardness anisotropy. 
InP was used because of the previous work done 
on it, and the fact that the zinc-blende structure 
has been found so far to exhibit only {11 1} 
(1 ]-0) slip. 
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Figure 1 Electron micrographs of a 
portion of the area around a Knoop 
indentation in the (001) plane. L is 
pointing in the direction of the long 
axis of indentation. (a) Area around 
facet 2 using 0 40 reflection. (b) Area 
around facet 1 using 400 reflection. 
Marker M represents 1 #m. 

2. Experimental 
Single crystals of  InP were prepared for indenta- 
tion on the (001)  and (011)  planes as described in 
the previous paper [6].  All indentations were 
made using a Kentron Microhardness Tester 
equipped with a Knoop diamond indentor and a 
calibrated eyepiece. All tests were standardized by 
using a 50 g load and completing each indentation 
within 20 sec. Indentation lengths were measured 
at a magnification of  x 500. 

After indenting, the backs of  the samples were 
ground down to 0.010in. using 600 grit SiC, and 
finally polished with Syton to remove the worked 
surface. Discs 3 mm in diameter containing the 
indentations were then cut out using an ultrasonic 
cutter. Next, the discs were thinned down for 
electron microscopy from the back, while protect- 
ing the indented surface, by polishing them in a 
solution of  2% Br in methanol. This part of  the pro- 
cedure was tedious because the discs with indenta- 
tions on the (001)  planes had a great tendency to 
cleave in the (110) directions, while the discs with 

indentations in the (011)  plane had a tendency 
not to leave any thin areas before holes developed 
as the samples were etched. Because of  these prob- 
lems, the only samples that were successfully pre- 
pared were on the (001) plane with the long axis 
of  the Knoop indentor in the [310] direction and 
on the (01 1) plane with the long axis in the [011] 
direction. 

Thin foils were then examined in a JEM 200 
electron microscope operating at 200kV.  The 
goniometer stage on the TEM allowed tilting exper- 

iments up to 30 ~ , while rotating up to 360 ~ . 

3. Results 
In general, the networks of  dislocations around the 
indentations showed a few characteristic defects. 
It was possible to identify these defects and classify 
them in an orderly manner. In all cases, in order to 
determine the Burgers vector of  dislocations, the 
g" b = 0 criterion was used where g is the operating 
reflection and b is the Burgers vector, while the 
g �9 R = 0 or integer criterion, where R is a displace- 
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ment vector associated with a fault, was used to 
determine the slip plane of stacking faults. 

Fig. 1 shows a composite of a portion of thb 
area adjacent to two facets of the (001) [310] 
Knoop indentation. Note the dislocations marked A 
lying in [010] direction. Contrast experiments 
show that these dislocations have a 1 [011] or 
�89 [0].1] Burgers vector. The habit plane was deter- 
mined by examining the stacking faults, B, whose 
traces lie along the [110] direction, and noting 
that for these faults R = � 8 9  or ~[]-11]. 
Thus, we see that a large stress must have been 
applied to the (]-11) [0]-1] and(1] . l )  [011] slip 
systems. Note that these faults appear to run from 
facet 1 to facet 2 or vice versa. Finally, the stacking 
faults marked C whose traces lie along the [1 TO] 
direction were found to have R =  �89 or 

[11 i-]. Note that these faults are found only in 
facet 2 and not in facet 1. 

Fig. 2 shows a portion of the [0]-1] Knoop 
indentation on the (011) plane. The single most 
important feature here is the group of dislocations 
running in the [21 ]-] direction of facet 2. Their 
Burgers vector was determined to be �89 [10]-]. This 
means that the slip plane must be either the (I  11) 
or (11-1), because these are the only planes which 
can contain the �89 Burgers vector. Upon 
closer examination, it can be seen that the ends of 
the dislocations lie in the [0]-1] direction which 
outlines the trace of the (111) as the habit plane. 
This indicates that the principal stress was applied 
to the (l 11) [10]-] slip system on this side of the 
indentor. The other side of the indentor, facet 1, 
shows dislocations running in the [2 ]. 1 ] direction. 
Using similar methods as before, it was determined 

that the Burgers vector of these dislocations is 
�89 []-10] and their habit plane is (1 1 1). 

4. Discussion 
As mentioned earlier, Daniels and Dunn's [1] 
effort to explain Knoop hardness anisotropy was 
based on the assumption that during the applica- 
tion of load, the indentor acts as a wedge imposing 
on the material a force, Fa., acting parallel to the 
steepest slope of each indentor facet, which causes 
some of the material to move to the surface 
around the indent. They, in effect, have ignored 
the force,FN, acting normal to each indentor facet, 
which would have a tendency to compress the 
material. On the other hand, Feng and Elbaum [2] 
have proposed that F N is the force to consider 
because "it seems to correspond more closely to 
reality". Since both models have shown some 
success in explaining experimental results, it may 
be assumed that both hypotheses are at least 
partially correct. Therefore it is proposed that the 
hardness anisotropy, within a given plane of inden- 
tation, may be governed by some linear combina- 
tion of both forces, FN and Fro, and that this 
resultant force, FR, varies in magnitude and direc- 
tion from material to material. It should be 
emphasized that this hypothesis is not to be con- 
sidered as a complete representation of the 
mechanism for hardness anisotropy. A full descrip- 
tion of the situation should also take into account 
other essentials such as work hardening, atomic 
packing, friction, ductility, and the interaction 
between different slip systems which are activated 
by different facets of the indentor. Nevertheless, 
this simple suggestion does reconcile two different 

Figure 2 Electron micrographs showing a portion of a Knoop indentation on the (011) plane plus some of the area 
around facets 1 and 2. L is pointing in the direction of the long axis of indentation and Marker M represents 1 #m. 
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TABLE I Slip systems with corresponding NMRSS calculated for the four facets of the Knoop indentor with the 
long axis of indentation in the [0 ]- 1 ] and [ 3 ]0] directions on the (011) and (001) planes respectively. 

Plane Direction Facet 1 Facet 2 Facet 3 Facet 4 

Slip system NMRSS Slip system NMRSS Slip system NMRSS Slip system NMRSS 
activated activated activated activated 

(001) [3]-0] (1]-1)<011) 0.490 (11]-)(011> 
(]11) (0 ]-1) (111) (01 ]) 

(011) [0]-1] (111)(]-10) --0.440 (111)(10]-) 
(]- 11) (101) (]- 11) (]-]- 0) 

approaches to the problem and also adds some 
insight as to how the different slip systems are 
activated. 

In order to test this hypothesis for InP it was 
assumed that F R would be parallel to the plane o f  
indentation. However, to avoid the limiting cons- 
traints of  Daniels and Dunn's model, the actual 
normalized resolved shear stress was calculated, on 
all possible slip systems, for each plane and direc- 
tion that was checked for hardness in this paper 
and the previous one [6]. In this way, it was 
possible to look at all 12 slip systems for each 
facet of  the indentor and thereby see if multiple 
slip per facet was theoretically possible. 

Table I shows the slip systems with the maxi- 
mum resolved shear stress calculated in this way, 
with FR/A, where A is the area perpendicular to 
FR, normalized to 1 (i.e., NMRSS for normalized 
maximum resolved shear stress), for the four facets 
o f  the Knoop indentor with the long axis of  
indentation in the [011] and [310] directions. 
These indentations are on the (011)  and (001)  
planes, respectively. Note that in the [310] 
direction it is predicted that facets 1 and 3 should 
produce most of  the slip by activating the (1 ]-1) 
[011] and (111)  [0T1] systems. Facets 2 and 4, 
on the other hand, may or may not activate slip on 
the (111)  [01]-] or (111-) [011] depending on 
how the slip systems interact with one another and 
with the indentor facets. Suppose, for example, 
that as the indentor is lowered and the critical 
stress for slip on facets 1 and 3 is reached, so that 
slip starts on the (111)  [011] and ( r l  1) [0]-1] 
due to the indentor facets. The stress would then 
increase in the area under facets 2 and 4. Thus, the 
indentor would be held up until the stress due to 
facets 2 and 4 would allow some slip on the (111)  
[011] and/or (111)  [01 ]-]. From this, it would 
be expected that many defects due to (11 i-) [011] 
and/or (111)  [011] slip should be seen, while 
some defects due to (1 1 ]-) [01 1] and/or (1 1 1) 
[01 ]-] slip may also be seen. Experimental evi- 

0.467 (111)(011) --0.490 (111)(011) 0.467 
(]-1 1) (01-1> (111) (01 i) 

0.440 (111)(].10) --0.440 (111)(10]-) 0.440 
(] 11) (101) (]- 11) (11 O) 

dence seems to bear this out. 
When the indentor is in the [0i-1] direction, 

Table I shows that the maximum resolved shear 
stress is equal on all four facets. Therefore, each 
facet should cause slip to occur on either or both 
of  the slip systems with the maximum resolved 
shear stress for that facet. Fig. 2 shows that ap- 
parently once slip starts on a given system in each 
facet it continues on that system. Hence we see 
that in facet 1 there is mainly (1 1 1) [i-1 0] slip, 
whereas in facet 2 there is mainly (1 1 1) [101-] 
slip. 

In order to check out this model further, the 
Knoop hardness numbers which were measured 
and given in a previous paper [6],  are compared in 
Table II to the NMRSS for a given direction o f  the 
long axis of  indentation of  the Knoop indentor on 
a given plane of  indentation. Hardness values are 
tabulated in descending order with their corre- 
sponding NMRSS. The first feature to notice is 

TABLE II Comparison of KHN with NMRSS for a given 
direction of the long axis of indentation of the Knoop 
indentor and a given plane of indentation. 

Plane Direction KHN NMRSS Facet 

(001) (100) 430_+10 0.456 1,2,3,4 
(110) 406+-11 0.456 1,2,3,4 
(210) 370 -+ 8 0.490 2 

0.467 1, 3 
(31 O) 367 -+ 9 0.490 1, 3 

0.467 2, 4 

(OlD (100) 399 + 13 0.432 1, 2,3,4 
(1 2.2) 353 -+ 16 0.450 1, 3, 

0.363 2,4 
(2i-1> 347 -+ 14 0.354 2,4 

0.335 1, 3 
(011> 341-+15 0.440 1,2,3,4 
(1 ]. 1> 341 +_ 15 0.440 1, 3 

0.379 2, 4 

(111) (312) 364 -+ 11 0.467 2,4 
0.429 1, 3 

(2]. i-) 359 _+ 12 0.457 1,2 ,3 ,4  
(101") 359_+11 0.457 1,2,3,4 
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that, in general, as the hardness decreases in a 
given plane NMRSS increases, hence indicating 
some sort of inverse relationship as first proposed 
by Daniels and Dunn [1]. The actual relationship 
is probably very complex, especially where differ- 
ent facets of the indentor produce different 
NMRSS. The only exception to this general trend 
seems to be the hardness on the (0 i 1) plane, in 
the [2 ]-1 ] direction. The reason for this is not 
yet clear. Another noticeable feature of Table II 
is that the model shows that there is apparently no 
relationship between NMRSS and their correspond- 
ing KHN for indentations in a given direction but 
in different planes. This is consistent with the fact 
that hardness anisotropy of InP is dependent on 
both the direction and plane of indentation [6] .  
Apparently, the hardness of each plane depends 
on other variables besides NMRSS, such as atomic 
packing. 

5. Conclusions 
The investigation of hardness indentations with 
the TEM has shown the following features: 

(1) The microstructure of the (001) [310] 
indentation shows most slip occurring on the 
(111) [011] and/or (111) [011] slip systems, 
while some slip does occur on the (111) and/or 
(I 11) slip planes. 

(2) The (011) (0i-1) indentation shows that slip 
occurs on principally the (111) [101] and the 
(111) [110], depending on the facet. 

By combining these facts with the KHN 
measured prviously for InP, it was possible to 
develop a simple model to explain many features 
which occur as a result of microhardness indenta- 

tions, produced by a Knoop indentor, on InP at 
room temperature. This model shows that both 
the tensile force, as first proposed by Daniels and 
Dunn, and the compressive force identified by 
Feng and Elbaum, are important and can be 
combined to produce slip in a predictable way. 
Moreover, this theory is not limited to one slip 
plane per facet, as is the theory of Daniels and 
Dunn. However, this model has its limitations in 
that it only generally explains how hardness varies 
with direction and plane of indentation. In order 
to understand hardness anisotropy more com- 
pletely much more work is needed. 
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